Answer in Brief
If a + b = 10 and ab = 21, find the value of a3 + b3
Advertisement Remove all ads
Solution
In the given problem, we have to find the value of `a^3 + b^3`
Given `a+b = 10, ab = 21`
We shall use the identity `(a+b)^3 = a^3 +b^3 +3ab(a+b)`
Here putting, `a+b = 10,ab= 21`
`(10)^3 = a^3+ b^3 +3 (21)(10)`
` 1000 = a^3 +b^3 +630`
`1000 - 630 = a^3 +b^3`
`370 = a^3 + b^3`
Hence the value of `a^3 +b^3` is 370.
Concept: Algebraic Identities
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads