Advertisement Remove all ads

If α And β Are the Zeros of the Quadratic Polynomial P(Y) = 5y2 − 7y + 1, Find the Value of `1/Alpha+1/Beta` - Mathematics

If α and β are the zeros of the quadratic polynomial p(y) = 5y2 − 7y + 1, find the value of `1/alpha+1/beta`

Advertisement Remove all ads

Solution

Since 𝛼 𝑎𝑛𝑑 𝛽 are the zeroes of the polynomials

p(y) = 5y2 – 7y + 1

Sum of the zeroes `alpha+beta="-coeeficient of x"/("coefficient of "x^2)`

`=-(-7)/5`

`=7/5`

Product of zeroes `=alphabeta="constant term"/"coefficient of "x^2`

`=1/5`

We have, `1/alpha+1/beta=(alpha+beta)/(alphabeta)`

By substituting `alpha+beta=7/5` and `alphabeta=1/5` we get,

`1/alpha+1/beta=(7/5)/(1/5)`

`1/alpha+1/beta=7/5xx5/1`

`1/alpha+1/beta=7`

Hence, the value of `1/alpha+1/beta` is 7

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 10 Maths
Chapter 2 Polynomials
Exercise 2.1 | Q 9 | Page 34
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×