If an isosceles triangle ABC, in which AB = AC = 6 cm, is inscribed in a circle of radius 9 cm, find the area of the triangle
Solution
Join OB, OC and OA.
In ∆ABO and ∆ACO,
AB = AC ......[Given]
BO = CO ......[Radii of same circle]
AO = AO ......[Common side]
∴ ∆ABO ≅ ∆ACO ......[By SSS congruence criterion]
⇒ ∠1 = ∠2 ......[CPCT]
Now, In ∆ABM and ∆ACM,
AB = AC ......[Given]
∠1 = ∠2 ......[Proved above]
AM = AM ......[Common side]
∴ ∆AMB ≅ ∆AMC ......[By SAS congruence criterion]
⇒ ∠AMB = ∠AMC ......[CPCT]
Also, ∠AMB + ∠AMC = 180° ......[Linear pair]
⇒ ∠AMB = 90°
We know that a perpendicular from the centre of circle bisects the chord.
So, OA is a perpendicular bisector of BC.
Let AM = x, then OM = 9 – x ......[∵ OA = radius = 9 cm]
In right angle ∆AMC,
AC2 = AM2 + MC2 .......[By Pythagoras theorem]
⇒ MC2 = 62 – x2 …(i)
In right angle ∆OMC,
OC2 = OM2 + MC2 .......[By Pythagoras theorem]
⇒ MC2 = 92 – (9 – x)2
From equation (i) and (ii),
62 – x2 = 92 – (9 – x)2
⇒ 36 – x2 = 81 – (81 + x2 – 18x)
⇒ 36 = 18x
⇒ x = 2
∴ AM = 2 cm
From equation (ii),
MC2 = 92 – (9 – 2)2
⇒ MC2 = 81 – 49 = 32
⇒ MC = `4sqrt(2)` cm
∴ BC = 2 MC = `8sqrt(2)` cm
∴ Area of ∆ABC = `1/2` × Base × Height
= `1/2 xx BC xx AM`
= `1/2 xx 8sqrt(2) xx 2`
= `8sqrt(2)` cm2
Hence, the required area of ∆ABC is `8sqrt(2)` cm2