Advertisement Remove all ads

If aijkandcjka¯=i^+j^+k^ and c¯=j^-k^, find aa¯ vector bb¯ satisfying abcandaba¯×b¯=c¯ and a¯.b¯=3 - Mathematics and Statistics

Advertisement Remove all ads
Advertisement Remove all ads
Sum

If `bar"a" = hat"i" + hat"j" + hat"k"  "and"  bar"c" = hat"j" - hat"k"`, find `bar"a"` vector `bar"b"` satisfying `bar"a" xx bar"b" = bar"c"  "and"  bar"a".bar"b" = 3`

Advertisement Remove all ads

Solution

Given: `bar"a" = hat"i" + hat"j" + hat"k" ,  bar"c" = hat"j" - hat"k"`

Let `bar"b" = "x"hat"i" + "y"hat"j" + "z"hat"k"`

Then `bar"a".bar"b" = 3` gives

`(hat"i" + hat"j" + hat"k").("x"hat"i" + "y"hat"j" + "z"hat"k") = 3`

∴ (1)(x) + (1)(y) + (1)(z) = 3

Also, x + y + z = 3     ...(1)

Also, `bar"c" = bar"a" xx bar"b"`

∴ `hat"j" - hat"k" = |(hat"i", hat"j" , hat"k"),(1,1,1),("x","y","z")|`

`= ("z - y")hat"i" - ("z - x")hat"j" + ("y - x")hat"k"`

`= ("z - y")hat"i" + ("x - z")hat"j" + ("y - x")hat"k"`

By equality of vectors,

z - y = 0     ...(2)

x - z = 1     .....(3)

y - x = - 1     ...(4)

From (2), y = z.

From (3), x = 1 + z

Substituting these values of x and y in (1), we get

1 + z + z + z = 3

∴ z = `2/3`

∴ y = z = `2/3`

∴ x = 1 + z = `1 + 2/3 = 5/3`

∴ `bar"b" = 5/3hat"i" + 2/3hat"j" + 2/3hat"k"`

i.e. `bar"b" = 1/3(5hat"i" + 2hat"j" + 2hat"k")`

Concept: Vector Product of Vectors (Cross)
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×