Advertisement Remove all ads

If aijka¯=2i^+j^-3k^ and bijkb¯=i^-2j^+k^, find a vector of magnitude 5 perpendicular to both aa¯ and bb¯. - Mathematics and Statistics

Advertisement Remove all ads
Advertisement Remove all ads
Sum

If `bar"a" = 2hat"i" + hat"j" - 3hat"k"` and  `bar"b" = hat"i" - 2hat"j" + hat"k"`, find a vector of magnitude 5 perpendicular to both `bar"a"` and `bar"b"`.

Advertisement Remove all ads

Solution

Given: `bar"a" = 2hat"i" + hat"j" - 3hat"k"` and 

`bar"b" = hat"i" - 2hat"j" + hat"k"`

∴ `bar"a" xx bar"b" = |(hat"i", hat"j", hat"k"),(2,1,-3),(1,-2,1)|`

`= (1 - 6)hat"i" - (2 + 3)hat"j" + (- 4 - 1)hat"k"`

`= - 5hat"i" - 5hat"j" - 5hat"k"`

∴ `|bar"a" xx bar"b"| = sqrt((-5)^2 + (- 5)^2 + (- 5)^2)`

`= sqrt(25 + 25 +25) = sqrt75 = 5sqrt3`

∴ unit vectors perpendicular to both the vectors `bar"a"` and `bar"b"`

`= (+- (bar"a"xxbar"b"))/(|bar"a" xx bar"b"|)`

`= (+- (- 5hat"i" - 5hat"j" - 5hat"k"))/(5sqrt3)`

`= (+- (hat"i" + hat"j" + hat"k"))/sqrt3`

∴ required vectors of magnitude 5 units

`= +- 5/sqrt3 (hat"i" + hat"j" + hat"k")`.

Notes

[Note: Answer in the textbook is incorrect.]

Concept: Vector Product of Vectors (Cross)
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×