If `bar"a" = 2hat"i" + hat"j" - 3hat"k"` and `bar"b" = hat"i" - 2hat"j" + hat"k"`, find a vector of magnitude 5 perpendicular to both `bar"a"` and `bar"b"`.
Solution
Given: `bar"a" = 2hat"i" + hat"j" - 3hat"k"` and
`bar"b" = hat"i" - 2hat"j" + hat"k"`
∴ `bar"a" xx bar"b" = |(hat"i", hat"j", hat"k"),(2,1,-3),(1,-2,1)|`
`= (1 - 6)hat"i" - (2 + 3)hat"j" + (- 4 - 1)hat"k"`
`= - 5hat"i" - 5hat"j" - 5hat"k"`
∴ `|bar"a" xx bar"b"| = sqrt((-5)^2 + (- 5)^2 + (- 5)^2)`
`= sqrt(25 + 25 +25) = sqrt75 = 5sqrt3`
∴ unit vectors perpendicular to both the vectors `bar"a"` and `bar"b"`
`= (+- (bar"a"xxbar"b"))/(|bar"a" xx bar"b"|)`
`= (+- (- 5hat"i" - 5hat"j" - 5hat"k"))/(5sqrt3)`
`= (+- (hat"i" + hat"j" + hat"k"))/sqrt3`
∴ required vectors of magnitude 5 units
`= +- 5/sqrt3 (hat"i" + hat"j" + hat"k")`.
Notes
[Note: Answer in the textbook is incorrect.]