Advertisement Remove all ads
Advertisement Remove all ads
Sum
If `|bar"a".bar"b"| = |bar"a" xx bar"b"|` and `bar"a".bar"b" < 0`, then find the angle between `bar"a" "and" bar"b"`.
Advertisement Remove all ads
Solution
Let θ be the angle between `bar"a"` and `bar"b"`
Then `|bar"a".bar"b"| = |bar"a" xx bar"b"|` gives
`|"ab cos" theta| = |"ab sin" theta|`
∴ - ab cos θ = ab sin θ
∴ - 1 = tan θ
∴ tan θ = - tan `pi/4` = tan `(pi - pi/4)`
∴ tan θ = tan `(3pi)/4`
∴ `theta = (3pi)/4`
Hence, the angle between `bar"a"` and `bar"b"` is `(3pi)/4`.
Concept: Vector Product of Vectors (Cross)
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads