Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
MCQ
If A1, A2, and A3 denote the areas of three adjacent faces of a cuboid, then its volume is
Options
A1 A2 A3
2A1 A2 A3
- \[\sqrt{A_1 A_2 A_3}\]
- \[{}^3 \sqrt{A_1 A_2 A_3}\]
Advertisement Remove all ads
Solution
We have;
Here A1, A2 and A3 are the areas of three adjacent faces of a cuboid.
But the areas of three adjacent faces of a cuboid are lb, bh and hl, where,
l →Length of the cuboid
b → Breadth of the cuboid
h → Height of the cuboid
We have to find the volume of the cuboid
Here,
`A_1A_2A_3a = (lb)(bh)(hl)`
`= (lbh)(lbh)`
`=(lbh)^2`
`=V^2 {"Since ,V = lbh"}`
`V = sqrt(A_1A_2A_3)`
Thus, volume of the cuboid is `sqrt(A_1A_2A_3)`.
Concept: Surface Area of a Cuboid
Is there an error in this question or solution?