If a1, a2, a3 and a4 are the coefficient of any four consecutive terms in the expansion of (1 + x)n, prove that a1a1+a2+a3a3+a4=2a2a2+a3 - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

If a1, a2, a3 and a4 are the coefficient of any four consecutive terms in the expansion of (1 + x)n, prove that `(a_1)/(a_1 + a_2) + (a_3)/(a_3 + a_4) = (2a_2)/(a_2 + a_3)`

Advertisement Remove all ads

Solution

Let a1, a2, a3 and a4 be the coefficient of four consecutive terms `"T"_(r + 1), "T"_(r + 2), "T"_(r + 3)` and `"T"_(r + 4)` respectively.

Then a1 = coefficient of Tr+1 = nCr

a2 = coefficient of Tr+2 = nCr+1 

a3 = coefficient of Tr+3 = nCr+2

And a4 = coefficient of Tr+4 = nCr+3

Thus `(a_1)/(a_1 + a_2) = (""^n"C"_r)/(""^n"C"_r + ""^n"C"_(r + 1))`

= `(""^n"C"_r)/(""^(n + 1)"C"_(r + 1)`   .....`(because ""^n"C"_r + ""^n"C"_(r + 1) = ""^(n + 1)"C"_(r + 1))`

= `(n)/(r(n - r)) xx  ((r + 1)(n - r))/(n + 1)`

= `(r + 1)/(n + 1)`

Similarly, `(a_3)/(a_3 + a_4) = (""^n"C"_(r + 2))/(""^n"C"_(r + 2) + ""^n"C"_(r + 3))`

= `(""^n"C"_(r + 2))/(""^(n + 1)"C"_(r + 3))`

= `(r + 3)/(n + 1)`

Hence, L.H.S. = `a_1/(a_1 + a_2) + a_3/(a_3 + a_4)`

= `(r + 1)/(n + 1) + (r + 3)/(n + 1)`

= `(2r + 4)/(n + 1)`

And R.H.S. = `(2a_2)/(a_2 + a_2) + a_3/(a_3 + a_4)`

= `(2(""^n"C"_(r + 1)))/(""^n"C"_(r + 1) + ""^n"C"_(r + 2))`

= `(2(""^n"C"_(r + 1)))/(""^(n + 1)"C"_(r + 2))`

= `2  n/((r + 1)(n - r - 1)) xx ((r + 2)(n - r - 1))/(n + 1)`

= `(2(r + 2))/(n + 1)`

Concept: Binomial Theorem for Positive Integral Indices
  Is there an error in this question or solution?
Chapter 8: Binomial Theorem - Solved Examples [Page 138]

APPEARS IN

NCERT Mathematics Exemplar Class 11
Chapter 8 Binomial Theorem
Solved Examples | Q 15 | Page 138
Share
Notifications

View all notifications


      Forgot password?
View in app×