Maharashtra State BoardHSC Arts 12th Board Exam
Advertisement Remove all ads

If a r.v. X has p.d.f., f (x) = cx , for 1 < x < 3, c > 0, Find c, E(X) and Var (X). - Mathematics and Statistics

Advertisement Remove all ads
Advertisement Remove all ads
Sum

If a r.v. X has p.d.f., 

f (x) = `c /x` , for 1 < x < 3, c > 0, Find c, E(X) and Var (X).

Advertisement Remove all ads

Solution

Since, f(x) is p.d.f. of r.v. X

∴` int_(-∞)^∞ f (x) dx` = 1

∴` int_(-∞)^1 f (x) dx + int_(3)^1f(x) dx+ int_(3)^∞f(x) dx = 1`

∴ `0 +int_(1)^3 f (x) dx +0 = 1`

∴ `int_(1)^3 c/x dx = 1`

∴ `c int_(1)^3 1/x dx = 1`

∴ `c [log x]_1^3 = 1`

∴ c [log 3 - log 1] = 1

∴ `1/log 3` ...........[∵ log 1 =  0]

E(X) = ` int_(-∞)^∞x f (x) dx = int_(-∞)^1x f (x) dx + int_(1)^3x f (x) dx + int_(3)^∞x f (x) dx`

`= 0 + int_(1)^3x f (x) dx + 0 = int_(1)^3x . c/x dx`

= `c int_(1)^31dx , where  c = 1/log3`

= `1/log3[x]_1^3 = 1/log 3[ 3-1] = 2/log3`

= consider, ` int_(-∞)^∞ x^2f (x) dx = int_(-∞)^1 x^2f (x) dx +int_(1)^3 x^2f (x) dx + int_(3)^∞ x^2f (x) dx`

= 0 +  `int_(1)^3 x^2f (x) dx + 0 = int_(-∞)^∞ x^2. c/x dx `

= `1/log3 int_(1)^3 x  dx = 1/log 3[x^2/2]_1^3`

= `1/log3[9/2-1/2] = 4/log3`

Now, var (x) = `int_(-∞)^∞x^2 f (x) dx - [ E (x)] ^2`

= `4/log3 - (2/log3)^2`

= `4/log3 - 4/(log3)^2`

= `4 (log3) - 4/(log3)^2 = (4[log3-1])/(log3)^2`

Hence, `c =1/log3, E(x) = 2/log3 and Var (x) = (4[log3-1])/(log3)^2`

Concept: Probability Distribution of Discrete Random Variables
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×