If A, B, C, D Are in G.P., Prove That: 1 a 2 + B 2 , 1 B 2 − C 2 , 1 C 2 + D 2 Are in G . P . - Mathematics

If a, b, c, d are in G.P., prove that:

$\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .$

Solution

a, b, c and d are in G.P.

$\therefore b^2 = ac$

$ad = bc$

$c^2 = bd$   .......(1)

$\left( \frac{1}{b^2 + c^2} \right)^2 = \left( \frac{1}{b^2} \right)^2 + \frac{2}{b^2 c^2} + \left( \frac{1}{c^2} \right)^2$

$\Rightarrow \left( \frac{1}{b^2 + c^2} \right)^2 = \left( \frac{1}{ac} \right)^2 + \frac{1}{b^2 c^2} + \frac{1}{b^2 c^2} + \left( \frac{1}{bd} \right)^2 \left[ \text { Using } (1) \right]$

$\Rightarrow \left( \frac{1}{b^2 + c^2} \right)^2 = \frac{1}{a^2 c^2} + \frac{1}{a^2 d^2} + \frac{1}{b^2 c^2} + \frac{1}{b^2 d^2} \left[ \text { Using }(1) \right]$

$\Rightarrow \left( \frac{1}{b^2 + c^2} \right)^2 = \frac{1}{a^2}\left( \frac{1}{c^2} + \frac{1}{d^2} \right) + \frac{1}{b^2}\left( \frac{1}{c^2} + \frac{1}{d^2} \right)$

$\Rightarrow \left( \frac{1}{b^2 + c^2} \right)^2 = \left( \frac{1}{a^2 + b^2} \right)\left( \frac{1}{c^2} + \frac{1}{d^2} \right)$

$\text{ Therefore }, \left( \frac{1}{b^2 + c^2} \right), \left( \frac{1}{c^2 + d^2} \right)\text { and } \left( \frac{1}{b^2 + c^2} \right) \text { are also in G . P } .$

Is there an error in this question or solution?

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 20 Geometric Progression
Exercise 20.5 | Q 11.3 | Page 46