If a, b, c are in A.P., prove that the straight lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent.

#### Solution

The given lines can be written as follows:

ax + 2y + 1 = 0 ... (1)

bx + 3y + 1 = 0 ... (2)

cx + 4y + 1 = 0 ... (3)

Consider the following determinant.

\[\begin{vmatrix}a & 2 & 1 \\ b & 3 & 1 \\ c & 4 & 1\end{vmatrix}\]

Applying the transformation \[R_1 \to R_1 - R_2 \text { and } R_2 \to R_2 - R_3\],

\[\begin{vmatrix}a & 2 & 1 \\ b & 3 & 1 \\ c & 4 & 1\end{vmatrix} = \begin{vmatrix}a - b & - 1 & 0 \\ b - c & - 1 & 0 \\ c & 4 & 1\end{vmatrix}\]

\[\Rightarrow \begin{vmatrix}a & 2 & 1 \\ b & 3 & 1 \\ c & 4 & 1\end{vmatrix} = \left( - a + b + b - c \right) = 2b - a - c\]

Given:

2b = a + c

Hence, the given lines are concurrent, provided 2b = a + c.