Advertisement Remove all ads

If A, B, C Are in A.P. and A, B, D Are in G.P., Show that A, (A − B), (D − C) Are in G.P. - Mathematics

If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.

Advertisement Remove all ads

Solution

\[\text { a, b and c are in A . P } . \]

\[ \therefore 2b = a + c . . . . . . . (i)\]

\[\text { Also, a, b and d are in G . P } . \]

\[ \therefore b^2 = ad . . . . . . . (ii)\]

\[\text { Now }, \left( a - b \right)^2 = a^2 - 2ab + b^2 \]

\[ \Rightarrow \left( a - b \right)^2 = a^2 - a\left( a + c \right) + ad \left[ \text { Using } (i)\text { and } (ii) \right]\]

\[ \Rightarrow \left( a - b \right)^2 = a^2 - a^2 - ac + ad\]

\[ \Rightarrow \left( a - b \right)^2 = ad - ac\]

\[ \Rightarrow \left( a - b \right)^2 = a(d - c)\]

\[\text { Therefore, }a, \left( a - b \right) \text { and } (d - c) \text { are in G . P }. \]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 20 Geometric Progression
Exercise 20.5 | Q 21 | Page 46
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×