If A, B and C Are the Angles of a δAbc, Prove that Tan ( C + a 2 ) = Cot B 2 - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

If A, B  and C are the angles of a  ΔABC, prove that tan `((C + "A")/2) = cot  B/2`

Advertisement Remove all ads

Solution

In ΔABC 

A + B + c = 180° 

⇒ A + C = 180° - B      ..........(i)

Now,

LHS `= tan (("C"+"A")/2)`

`=tan ((180^circ - "B")/2)`           [Using (i)]

`= tan (90^circ - "B"/2)`

`= cot  "B"/2 `

= RHS

Concept: Trigonometry
  Is there an error in this question or solution?

APPEARS IN

RS Aggarwal Secondary School Class 10 Maths
Chapter 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 9 | Page 314

Video TutorialsVIEW ALL [2]

Share
Notifications

View all notifications


      Forgot password?
View in app×