If a and b are perpendicular vectors, |a+b| = 13 and |a| = 5 ,find the value of |b|. - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

If `veca and vecb` are perpendicular vectors, `|veca+vecb| = 13 and |veca| = 5` ,find the value of `|vecb|.`

Advertisement Remove all ads

Solution

Given that `veca and vecb` are two perpendicular vectors.

Thus, ` veca .vecb= 0 `
Also given that, ` |veca +vecb| 13 and |veca|=5.`

We need to find the value of vecb.

Consider `|veca + vecb|^2 :`

`|veca +vecb|^2 = |veca|^2 |veca.vecb|+|vecb|^2`

`13^2=5^2+2xx0+|vecb|^2`

`169=25+|vecb|^2`

`|vecb|^2=169-25`

`|vecb|^2=144`

`vecb=12`

 

Concept: Introduction of Product of Two Vectors
  Is there an error in this question or solution?
2013-2014 (March) All India Set 3

Video TutorialsVIEW ALL [1]

Share
Notifications

View all notifications


      Forgot password?
View in app×