Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
If `veca and vecb` are perpendicular vectors, `|veca+vecb| = 13 and |veca| = 5` ,find the value of `|vecb|.`
Advertisement Remove all ads
Solution
Given that `veca and vecb` are two perpendicular vectors.
Thus, ` veca .vecb= 0 `
Also given that, ` |veca +vecb| 13 and |veca|=5.`
We need to find the value of vecb.
Consider `|veca + vecb|^2 :`
`|veca +vecb|^2 = |veca|^2 |veca.vecb|+|vecb|^2`
`13^2=5^2+2xx0+|vecb|^2`
`169=25+|vecb|^2`
`|vecb|^2=169-25`
`|vecb|^2=144`
`vecb=12`
Concept: Introduction of Product of Two Vectors
Is there an error in this question or solution?