Sum
If `bar("a")` and `bar("b")` are two vectors perpendicular each other, prove that `(bar("a") + bar("b"))^2 = (bar("a") - bar("b"))^2`
Advertisement Remove all ads
Solution
`bar("a")` is perpendicular to `bar("b")`.
∴ `bar("a")*bar("b")` = 0
`(bar("a") + bar("b")) = (bar("a"))^2 + 2bar("a")*bar("b") + (bar("b"))^2`
= `(bar("a"))^2 + 2(0) + (bar("b"))^2`
= `(bar("a"))^2 + (bar("b"))^2` .......(i)
`(bar("a") - bar("b"))^2 = (bar("a"))^2 - 2bar("a")*bar("b") + (bar("b"))^2`
= `(bar("a"))^2 + 2(0) + (bar("b"))^2`
= `(bar("a"))^2 + (bar("b"))^2` .......(ii)
From (i) and (ii), we get
`(bar("a") + bar("b"))^2 = (bar("a") - bar("b"))^2`
Concept: Scalar Product of Vectors (Dot)
Is there an error in this question or solution?
APPEARS IN
Advertisement Remove all ads