Sum
If A = `[(3, 1),(-1, 2)]`, prove that A2 – 5A + 7I = 0, where I is unit matrix of order 2
Advertisement Remove all ads
Solution
A2 = A · A = `[(3, 1),(-1, 2)] [(3, 1),(-1, 2)]`
= `[(9 - 1, 3 + 2),(-3 - 2, -1 + 4)]`
= `[(8, 5),(-5, 3)]`
∴ A2 – 5A + 7I = `[(8, 5),(-5, 3)] -5[(3, 1),(-1, 2)] + 7[(1, 0),(0, 1)]`
= `[(8, 5),(-5, 3)] - [(15, 5),(-5, 10)] + [(7, 0),(0, 7)]`
= `[(8 - 15 + 7, 5 - 5 + 0),(-5 + 5 + 0, 3 - 10 + 7)]`
= `[(0, 0),(0, 0)]`
= 0.
Concept: Types of Matrices
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads