Advertisement Remove all ads

If A(3, 2, -1), B(-2, 2, -3), C(3, 5, -2), D(-2, 5, -4) then verify that the points are the vertices of a parallelogram. - Mathematics and Statistics

Advertisement Remove all ads
Advertisement Remove all ads
Sum

If A(3, 2, -1), B(-2, 2, -3), C(3, 5, -2), D(-2, 5, -4) then verify that the points are the vertices of a parallelogram.

Advertisement Remove all ads

Solution

Let `bar"a", bar"b", bar"c", bar"d"` be the position vectors of A, B, C, D respectively w.r.t. the origin O.

Then `bar"a" = 3hat"i" + 2hat"j" - hat"k", bar"b" = - 2hat"i" + 2hat"j" - 3hat"k", bar"c" = 3hat"i" + 5hat"j" - 2hat"k", bar"d" = - 2hat"i" + 5hat"j" - 4hat"k".`

∴ `bar"AB" = bar"b" - bar"a"`

`= (- 2hat"i" + 2hat"j" - 3hat"k") - (3hat"i" + 5hat"j" - hat"k")`

`= - 5hat"i" - 2hat"k"`

∴ `bar"DC" = bar"c" - bar"d"`

`= (3hat"i" + 5hat"j" - 2hat"k") - (- 2hat"i" + 5hat"j" - 4hat"k")`

`= 5hat"i" + 2hat"k"`

`= -(- 5hat"i" - 2hat"k")`

∴ `bar"DC" = - bar"AB"`

∴ `bar"DC"` is scalar multiple of `bar"AB"`

∴ `bar"DC"` is parallel to `bar"AB"`

Also, `|bar"DC"| = sqrt(5^2 + 2^2) = sqrt(25 + 4) = sqrt29`

and `|bar"AB"| = sqrt((-5)^2 + (-2)^2) = sqrt(25 + 4) = sqrt29`

∴ `|bar"DC"| = |bar"AB"|`

∴ l(AB) = l(DC)

∴ opposite sides AB and DC of ABCD are parallel and equal.

∴ ABCD is a parallelogram.

Concept: Representation of Vector
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×