If A=[[2,-2],[4,3]] then find A^-1 by adjoint method. - Mathematics and Statistics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

If `A=[[2,-2],[4,3]]` then find `A^-1` by adjoint method.

Advertisement Remove all ads

Solution

Given :`A==[[2,-2],[4,3]]`

`|A|=|[2,-2],[4,3]|=6+8=14ne0`

`therefore A^-1 " exist"`

`M_11=3           A_11=(-1)^2 3=3`

`M_12=4           A_11=(-1)^3 3=-4`

`M_21=-2          A_11=(-1)^3 (-2)=2`

`M_22=2           A_11=(-1)^2 3=2`

 

`Adj. (A)=[[A_11,A_12],[A_21,A_22]]=[[3,-4],[2,2]]`

`=[[3,2],[-4,2]]`

`therefore A^-1=(Adj(A))/|A|`

`=1/14[[3,2],[-4,2]]`

Concept: Determinants - Adjoint Method
  Is there an error in this question or solution?
2012-2013 (March)

APPEARS IN

Video TutorialsVIEW ALL [1]

Share
Notifications

View all notifications


      Forgot password?
View in app×