Advertisement Remove all ads

If A=(2,0,1,2,1,3,1,-1,0) Find A2-5a+4i And Hence Find a Matrix X Such That A2-5a+4i+X=O - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

If `A=([2,0,1],[2,1,3],[1,-1,0])` find A2 - 5A + 4I and hence find a matrix X such that  A2 - 5A + 4I + X = 0

Advertisement Remove all ads

Solution

`A=[[2,0,1],[2,1,3],[1,-1,0]]`

`A^2=A A=[[2,0,1],[2,1,3],[1,-1,0]][[2,0,1],[2,1,3],[1,-1,0]]=[[5,-1,2],[9,-2,5],[0,-1,-2]]`

Also,`-5A=[[-10,0,-5],[-10,-5,-15],[-5,5,0]]`

`A^2-5A+4I=[[5,-1,2],[9,-2,5],[0,-1,-2]]-[[-10,0,-5],[-10,-5,-15],[-5,5,0]]+[[4,0,0],[0,4,0],[0,0,4]]=[[-1,-1,-3],[-1,-3,-10],[-5,4,2]]`

Now

`A^2-5A+4I+X=O`

`=>X=-(A^2-5A+4I)`

`=>X=(-1)[[-1,-1,-3],[-1,-3,-10],[-5,4,2]]=[[1,1,3],[1,3,10],[5,-4,-2]]`

Concept: Operations on Matrices - Addition of Matrices
  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×