Maharashtra State BoardHSC Commerce 11th
Advertisement Remove all ads

If |4+x4-x4-x4-x4+x4-x4-x4-x4+x| = 0, then find the values of x. - Mathematics and Statistics

Sum

If `|(4 + x, 4 - x, 4 - x),(4 - x, 4 + x, 4 - x),(4 - x, 4 - x, 4 + x)|` = 0, then find the values of x.

Advertisement Remove all ads

Solution

`|(4 + x, 4 - x, 4 - x),(4 - x, 4 + x, 4 - x),(4 - x, 4 - x, 4 + x)|` = 0

Applying C1 → C1 + C2 + C3, we get

`|(12 -  x, 4 - x, 4 - x),(12 -  x, 4 + x, 4 - x),(12 -  x, 4 - x, 4 + x)|` = 0

Taking (12 – x) common from C1, we get

`(12 - x) |(1, 4 - x, 4 - x),(1, 4 + x, 4 - x),(1, 4 - x, 4 + x)|` = 0

Applying R2 → R2 – R1 and R3 → R3 – R1, we get

`(12 - x) |(1, 4 - x, 4 - x),(0, 2x, 0),(0, 0, 2x)|` = 0

∴ (12 – x)[1(4x2 – 0) –(4 – x)(0 – 0) + (4 –x)(0 – 0)] = 0
∴ (12 –x)(4x2) = 0
∴ x2(12 – x) = 0
∴ x = 0 or 12 – x = 0
∴ x = 0 or x = 12

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×