Advertisement Remove all ads

If 4 X − 4 X − 1 = 24 , Then (2x)X Equals - Mathematics

MCQ

If \[4x - 4 x^{- 1} = 24,\] then (2x)x equals

Options

  • \[5\sqrt{5}\]

  • \[\sqrt{5}\]

  • \[25\sqrt{5}\]

  • 125

Advertisement Remove all ads

Solution

We have to find the value of  `(2x)^x`if  `4^x - 4^(x-1) = 24`

So,

Taking 4x as common factor we get 

`4^x (1- 1/4) = 24`

`4^x (1-4^-1) = 24`

`4^x ((1xx4)/(1 xx4)-1/4) = 24`

`4^4 ((4-1)/4)= 24`

`4^x xx 3/4 = 24`

`4^x = 24 xx 4/3`

`4^x = 32`

`2^(2x) =2^5`

By equating powers of exponents we get 

`2x = 5 `

`x=5/2`

By substituting `x=5/2`  in `(2x)^x` we get

`(2x)^x=(2xx 5/2)^(5/2)`

  = `(2xx5/2)^(5/2)`

`=5^(5/2)`

`=5^(5 xx1/2)`

`(2x)^x = 2sqrt(5^5)`

`=2sqrt (5xx5xx5xx5xx5)`

`= 5xx5  2sqrt5`

 = `25sqrt5`

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Mathematics for Class 9
Chapter 2 Exponents of Real Numbers
Q 28 | Page 32
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×