Advertisement Remove all ads

# If 3x − 2y = 11 and xy = 12, find the value of 27x3 − 8y3 - Mathematics

Answer in Brief

If 3x − 2y = 11 and xy = 12, find the value of 27x3 − 8y3

Advertisement Remove all ads

#### Solution

In the given problem, we have to find the value of  27x^3 - 8y^3

Given 3x- 2y= 11,xy = 12,

In order to find  27x^3 - 8y^3we are using identity  (a-b)^3 = a^3 - b^3 - 3ab (a-b)

(3x - 2y)^3 = (11)^3

27x^3 - 8y^3 -3 (3x)(2y)(3x- 2y) = 11 xx 11 xx 11

27x^3 - 8y^3 -3 (3x)(2y)(3x- 2y) = 1331

Here putting, 3x - 2y = 11,xy= 12

27x^3 - 8y^3 - 18 xx 12 xx 11 = 1331

27x^3 -8y^3 - 2376 = 1331

27x^3 - 8y^3 = 1331 + 2376

27x^3 -8y^3 = 3707

Hence the value of  27x^3 - 8y^3is 3707.

Is there an error in this question or solution?
Advertisement Remove all ads

#### APPEARS IN

RD Sharma Mathematics for Class 9
Chapter 4 Algebraic Identities
Exercise 4.3 | Q 10 | Page 20
Advertisement Remove all ads

#### Video TutorialsVIEW ALL 

Advertisement Remove all ads
Share
Notifications

View all notifications

Forgot password?
Course