If 3 cot A = 4, Check whether `((1-tan^2 A)/(1+tan^2 A)) = cos^2 A - sin^2 A` or not
Solution 1
It is given that 3cot A = 4 or cot A = 4/3
Consider a right triangle ABC, right-angled at point B.
cot A =` ("Side adjacent to" angle A)/("Side opposite to"angle A)`
(AB)/(BC) = 4/3
If AB is 4k, then BC will be 3k, where k is a positive integer.
In ΔABC,
(AC)2 = (AB)2 + (BC)2
= (4k)2 + (3k)2
= 16k2 + 9k2
= 25k2
AC = 5k
`cos A = ("Side adjacent to"angleA)/"Hypotenuse" = (AB)/(AC) `
= 4k/5k = 4/5
`sin A = ("Side adjacent to"angleA)/"Hypotenuse" = (BC)/(AC)`
=3k/5k = 3/5
`tan A = ("Side adjacent to"angleA)/"Hypotenuse" = (BC)/(AB)`
= 3k/4k = 3/4
`(1-tan^2 A)/(1+tan^2 A) = ((1 - (3/4)^2)/(1+(3/4)^2)) = ((1-9/16)/(1+9/16))`
`= (7/16)/(25/16) = 7/25`
cos2 A + sin2 A = (4/5)2 - (3/5)2
= 16/25 - 9/25 = 7/25
`:. (1-tan^2A)/(1+tan^2 A)= cos^2A - sin^2A`
Solution 2
3 cot A = 4, check = `(1 - tan^2 A)/(1 + tan^2 A) = cos^2 A - sin^2 A`
`cot A = "𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑠𝑖𝑑𝑒"/"𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑠𝑖𝑑𝑒" = 4/3`
Let x be the hypotenuse
By Applying Pythagoras theorem
𝐴𝐶2 = 𝐴𝐵2 + 𝐵𝐶2
𝑥2 = 42 + 32
𝑥2 = 25
𝑥 = 5
`Tan A = 1/(cos^2 A) = 3/4`
`cos A = "𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑠𝑖𝑑𝑒"/"ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒" = 4/5`
`sin A = 3/5`
L.H.S = `(1 - tan^2 A)/(1 + tan^2 A)= (1 - (3/4)^2)/(1 + (3/4)^2) = ((16 - 9)/16)/((16 + 9)/16) = 7/25`
`R.H.S cos^2A - sin^2 A = (4/5)^2 - (3/5)^2 = (16 - 9)/25`
`= 7/25`