Advertisement Remove all ads

If π 2 < X < π , Then √ 1 − Sin X 1 + Sin X + √ 1 + Sin X 1 − Sin X is Equal to - Mathematics

MCQ

If \[\frac{\pi}{2} < x < \pi, \text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\] is equal to

Options

  • 2 sec x

  • −2 sec x

  • sec x

  • −sec x

Advertisement Remove all ads

Solution

−2 sec x

\[\sqrt{\frac{1 - \sin x}{1 + \sin x}} + \sqrt{\frac{1 + \sin x}{1 - \sin x}}\]
\[ = \sqrt{\frac{\left( 1 - \sin x \right)\left( 1 - \sin x \right)}{\left( 1 + \sin x \right)\left( 1 - \sin x \right)}} + \sqrt{\frac{\left( 1 + \sin x \right)\left( 1 + \sin x \right)}{\left( 1 - \sin x \right)\left( 1 + \sin x \right)}}\]
\[ = \sqrt{\frac{\left( 1 - \sin x \right)^2}{1 - \sin^2 x}} + \sqrt{\frac{\left( 1 + \sin x \right)^2}{1 - \sin^2 x}}\]
\[ = \sqrt{\frac{\left( 1 - \sin x \right)^2}{\cos^2 x}} + \sqrt{\frac{\left( 1 + \sin x \right)^2}{\cos^2 x}}\]
\[ = \frac{\left( 1 - \sin x \right)}{- \cos x} + \frac{\left( 1 + \sin x \right)}{- \cos x} \left[ \frac{\pi}{2} < x < \pi, \text{so }\cos x \text{ will be negative . }\right]\]
\[ = - \left( \sec x - \tan x \right) - \left( \sec x + \tan x \right)\]
\[ = - 2\sec x\]
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 5 Trigonometric Functions
Q 6 | Page 41
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×