Advertisement Remove all ads

If π 2 < X < 3 π 2 , Then √ 1 − Sin X 1 + Sin X is Equal to - Mathematics

MCQ

If \[\frac{\pi}{2} < x < \frac{3\pi}{2},\text{ then }\sqrt{\frac{1 - \sin x}{1 + \sin x}}\] is equal to

 

Options

  • sec x − tan x

  •  sec x + tan x

  • tan x − sec x

  • none of these

Advertisement Remove all ads

Solution

 tan x − sec x
\[\sqrt{\frac{1 - \sin x}{1 + \sin x}} \]
\[ = \sqrt{\frac{\left( 1 - \sin x \right)\left( 1 - \sin x \right)}{\left( 1 + \sin x \right)\left( 1 - \sin x \right)}}\]
\[ = \sqrt{\frac{\left( 1 - \sin x \right)^2}{1 - \sin^2 x}}\]
\[ = \sqrt{\frac{\left( 1 - \sin x \right)^2}{\cos^2 x}}\]
\[ = \frac{\left( 1 - \sin x \right)}{- cos x} \left[\text{ as,} \frac{\pi}{2} < x < \frac{3\pi}{2},\text{ so }\cos\theta\text{ will be negative }\right]\]
\[ = - \left( sec x - \tan x \right) \]
\[ = - sec x + \tan x\]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 5 Trigonometric Functions
Q 3 | Page 41
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×