Advertisement Remove all ads

If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to - Mathematics

MCQ

If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to 

Options

  •  1

  • −1

  • \[\sqrt{3}\]

  • \[\frac{1}{\sqrt{3}}\]

Advertisement Remove all ads

Solution

Given that:  sin θ=cos (20-45°) and θ and 2θ-45 are acute angle 

We have to find  tan θ 

⇒` sin θ=cos (2θ-45°)` 

⇒`90°-θ=2θ-45θ` 

⇒`3θ=135°` 

Where θ and` 2θ-45°`  are acute angles

Since `θ =45°` 

Now

tan θ 

 = tan 45°   Put θ=45° 

=1 

 

 

 

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 10 Maths
Chapter 10 Trigonometric Ratios
Q 23 | Page 58
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×