CBSE Class 10CBSE
Share
Notifications

View all notifications

If (−2, 3), (4, −3) and (4, 5) Are the Mid-points of the Sides of a Triangle, Find the Coordinates of Its Centroid. - CBSE Class 10 - Mathematics

Login
Create free account


      Forgot password?

Question

If (−2, 3), (4, −3) and (4, 5) are the mid-points of the sides of a triangle, find the coordinates of its centroid.

Solution

Let ΔABC be ant triangle such that P (−2, 3); Q (4,−3) and R (4, 5) are the mid-points of the sides AB, BC, CA respectively.

We have to find the co-ordinates of the centroid of the triangle.

Let the vertices of the triangle be`A(x_1,y_1);B(x_2,y_2);C(x_3,y_3)` 

In general to find the mid-point p(x,y)  of two points`A(x_1,y_1)`and`B(x_2,y_2)` we use section formula as,  

`p(x,y)=((x_1+x_2)/2,(y_1+y_2)/2)` 

So, co-ordinates of P, 

`(-2,3)=((x_1+x_2)/2,(y_1+y_2)/2)` 

Equate the x component on both the sides to get, 

`x_1+x_2=-4` .........(1) 

Similarly, 

`y_1+y_2=6` ..........(2) 

Similary, co-ordinates of Q

`(4,-3)=((x_3+x_2)/2,(y_3+y_2)/2)`  

Equate the x component on both the sides to get, 

`x_3+x_2=8`.........(3) 

Similarly, 

`y_3+y_2=-6 `..........(4) 

Equate the x componet on both the sides to get, 

`x_3+x_1=8`..........(5) 

Similarly,

`y_3+y_1=10`..........(6) 

Add equation (1) (3) and (5) to get, 

`2(x_1+x_2+x_3)=12 ` 

`x_1+x_2+x_3 =6` 

Similarly, add equation (2) (4) and (6) to get, 

`2(y_1+y_2+y_3)=10` 

`y_1+y_2+y_3=5` 

We know that the co-ordinates of the centroid G of a triangle whose vertices are 

`(x_1,y_1), (x_2,y_2),(x_3,y_3) is `  

`G((x_1+x_2+x_3)/3,( y_1+y_2+y_3)/3)` 

So, centroid Gof a triangle `triangle ABC `is , 

`G(2,5/3)` 

 

 

  Is there an error in this question or solution?

APPEARS IN

Video TutorialsVIEW ALL [1]

Solution If (−2, 3), (4, −3) and (4, 5) Are the Mid-points of the Sides of a Triangle, Find the Coordinates of Its Centroid. Concept: Concepts of Coordinate Geometry.
S
View in app×