If ∫1x+x5 dx = f(x) + c, then ∫x4x+x5dx = ______ - Mathematics and Statistics

Advertisements
Advertisements
MCQ
Fill in the Blanks

If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______

Options

  • f(x) − log x + c

  • f(x) + log x + c

  • log x − f(x) + c

  • `1/5x^5` f(x) + c

Advertisements

Solution

log x − f(x) + c

  Is there an error in this question or solution?
Chapter 2.3: Indefinite Integration - MCQ

RELATED QUESTIONS

Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`


Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`


Evaluate :

`int(sqrt(cotx)+sqrt(tanx))dx`


Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Find : `int(x+3)sqrt(3-4x-x^2dx)`


Find `intsqrtx/sqrt(a^3-x^3)dx`


Integrate the functions:

sin (ax + b) cos (ax + b)


Integrate the functions:

`sqrt(ax + b)`


Integrate the functions:

`xsqrt(1+ 2x^2)`


Integrate the functions:

`1/(x(log x)^m),  x > 0, m ne 1`


Integrate the functions:

`x/(9 - 4x^2)`


Integrate the functions:

`x/(e^(x^2))`


Integrate the functions:

`(e^(2x) -  e^(-2x))/(e^(2x) + e^(-2x))`


Integrate the functions:

`sqrt(sin 2x) cos 2x`


Integrate the functions cot x log sin x


Integrate the functions in `1/(1 + cot x)`


Integrate the functions in `(1+ log x)^2/x`


Choose the correct answer `int (dx)/(sin^2 x cos^2 x)` equals

(A) tan x + cot x + C

(B) tan x – cot x + C

(C) tan x cot x + C

(D) tan x – cot 2x + C


Evaluate: `int 1/(x(x-1)) dx`


Solve: dy/dx = cos(x + y)


Evaluate `int 1/(3+ 2 sinx + cosx) dx`


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


Evaluate: `int (2y^2)/(y^2 + 4)dx`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


Evaluate: `int (sec x)/(1 + cosec x) dx`


\[\int\sqrt{x - x^2} dx\]

\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

\[\int\sqrt{9 - x^2}\text{ dx}\]

\[\int\sqrt{16 x^2 + 25} \text{ dx}\]

Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of

\[\int \tan^6 x \sec^2 x \text{ dx }\] .

Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

 Write a valoue of \[\int \sin^3 x \cos x\ dx\]

 


Write a value of\[\int \cos^4 x \text{ sin x dx }\]


Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]


Write a value of\[\int \log_e x\ dx\].

 


Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]


Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


Write a value of\[\int e^{ax} \cos\ bx\ dx\].

 


Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]


The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


The value of \[\int\frac{1}{x + x \log x} dx\] is


 Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`


Integrate the following w.r.t. x : `3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`


Integrate the following w.r.t. x : `2x^3 - 5x + 3/x + 4/x^5`


Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`


Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`


Integrate the following functions w.r.t. x : `(logx)^n/x`


Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`


Integrate the following functions w.r.t. x : `x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`


Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`


Integrate the following functions w.r.t. x : tan5x


Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`


Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`


Evaluate the following : `int (1)/(25 - 9x^2).dx`


Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`


Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`


Evaluate the following:

`int (1)/sqrt((x - 3)(x + 2)).dx`


Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`


Evaluate the following : `int sinx/(sin 3x).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`


Evaluate the following : `int (logx)2.dx`


Choose the correct options from the given alternatives :

`int (e^x(x - 1))/x^2*dx` =


Choose the correct options from the given alternatives :

`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =


Choose the correct options from the given alternatives :

`int (e^(2x) + e^-2x)/e^x*dx` =


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx


Evaluate the following.

`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


Fill in the Blank.

`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______


State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t


State whether the following statement is True or False.

If `int x  "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.


`int 1/sqrt((x - 3)(x - 2))` dx = ________________


`int 1/(cos x - sin x)` dx = _______________


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int sqrt(x^2 + 2x + 5)` dx = ______________


`int 2/(sqrtx - sqrt(x + 3))` dx = ________________


`int  ("e"^x(x - 1))/(x^2)  "d"x` = ______ 


`int sqrt(1 + sin2x)  "d"x`


`int (sin4x)/(cos 2x) "d"x`


`int ("e"^(3x))/("e"^(3x) + 1)  "d"x`


`int logx/x  "d"x`


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int cot^2x  "d"x`


`int x/(x + 2)  "d"x`


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int x^3"e"^(x^2) "d"x`


`int (1 + x)/(x + "e"^(-x))  "d"x`


`int sin^-1 x`dx = ?


If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


`int sec^6 x tan x   "d"x` = ______.


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.


The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.


`int (f^'(x))/(f(x))dx` = ______ + c.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


`int(log(logx) + 1/(logx)^2)dx` = ______.


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


The value of `intsinx/(sinx - cosx)dx` equals ______.


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


`int x/sqrt(1 - 2x^4) dx` = ______.

(where c is a constant of integration)


`int cos^3x  dx` = ______.


`int secx/(secx - tanx)dx` equals ______.


Evaluate the following.

`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


Evaluate `int(1 + x + x^2/(2!))dx`


Solve the following Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)dx`


Evaluate:

`int 1/(1 + cosα . cosx)dx`


Evaluate the following

`int x^3/sqrt(1+x^4) dx`


Evaluate:

`int sqrt((a - x)/x) dx`


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


Evaluate:

`int sin^2(x/2)dx`


Evaluate.

`int (5x^2-6x+3)/(2x-3)dx`


`int x^2/sqrt(1 - x^6)dx` = ______.


If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int1/(x^2+4x-5) dx`


`int 1/(sin^2x cos^2x)dx` = ______.


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate:

`int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Share
Notifications



      Forgot password?
Use app×