If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______. - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
MCQ
Fill in the Blanks

If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals ______.

Options

  • `(3^"n" + 1)/2`

  • `(3^"n" - 1)/2`

  • `(1 - 3^"n")/2`

  • `3^"n" + 1/2`

Advertisement Remove all ads

Solution

If (1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n , then a0 + a2 + a4 + ... + a2n equals `(3^"n" + 1)/2`.

Explanation:

Putting x = 1 and –1 in

(1 – x + x2)n = a0 + a1 x + a2 x2 + ... + a2n x2n 

We get 1 = a0 + a1 + a2 + a3 + ... + a2n   ......(1)

And 3n = a0 – a1 + a2 – a3 + ... + a2n    ......(2)

Adding (1) and (2), we get

3n + 1 = 2(a0 + a2 + a4 + ... + a2n)

Therefore a0 + a2 + a4 + ... + a2n = `(3^"n" + 1)/2`

Concept: Binomial Theorem for Positive Integral Indices
  Is there an error in this question or solution?

APPEARS IN

NCERT Mathematics Exemplar Class 11
Chapter 8 Binomial Theorem
Solved Examples | Q 18 | Page 140
Share
Notifications

View all notifications


      Forgot password?
View in app×