If (1+i)22-i = x + iy, then find the value of x + y. - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

If `(1 + i)^2/(2 - i)` = x + iy, then find the value of x + y.

Advertisement Remove all ads

Solution

Given that: `(1 + i)^2/(2 - i)` = x + iy

⇒ `(1 + i^2 + 2i)/(2 - i)` = x + iy

⇒ `(1 - 1 + 2i)/(2 - i)` = x + iy

⇒ `(2i)/(2 - i)` = x + iy

⇒ `(2i(2 + i))/((2 - i)(2 + i))` = x + iy

⇒ `(4i + 2i^2)/(4 - i^2)` = x + iy

⇒ `(4i - 2)/(4 + 1)` = x + iy   ......[∵ i2 = –1]

⇒ `(-2 + 4i)/5` = x + iy

⇒ `(-2)/5 + 4/5 i` = x + iy

Comparing the real and imaginary parts,

We get x = `(-2)/5` and y = `4/5`

Hence, x + y = `(-2)/5 + 4/5 = 2/5`.

Concept: Algebraic Operations of Complex Numbers
  Is there an error in this question or solution?

APPEARS IN

NCERT Mathematics Exemplar Class 11
Chapter 5 Complex Numbers and Quadratic Equations
Exercise | Q 4 | Page 91

Video TutorialsVIEW ALL [1]

Share
Notifications

View all notifications


      Forgot password?
View in app×