MCQ
If (1+i)(1 + 2i)(1+3i)..... (1+ ni) = a+ib,then 2 ×5 ×10 ×...... ×(1+n2) is equal to.
Options
`sqrt(a^2 +b^2)`
`sqrt(a^2 +b^2)`
`sqrt(a^2 - b^2)`
`a^2 +b^2`
`a^2 -b^2`
a+b
Advertisement Remove all ads
Solution
`a^2 +b^2`
(1 + i)(1 + 2i)(1 + 3i) ......(1 + ni) = a + ib
Taking modulus on both the sides, we get:
`|(1+i)(1+2i) (1+3i).............. (1+ni)| = |a+ib|`
`|(1+i)(1+2i)(1+3i)..............(1+ni)|`can be written as `|(1+i)| |(1+2i)| |(1+3i)|........|(1+ ni)|`
\[\sqrt{1^2 + 1^2} \times \sqrt{1^2 + 2^2} \times \sqrt{1^2 + 3^2} \times . . . \times \sqrt{1 + n^2} = \sqrt{a^2 + b^2}\]
\[\Rightarrow \sqrt{2} \times \sqrt{5} \times \sqrt{10} \times . . . \times \sqrt{1 + n^2} = \sqrt{a^2 + b^2}\]
Squaring on both the sides, we get:
\[2 \times 5 \times 10 \times . . . \times (1 + n^2 ) = a^2 + b^2\]
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads