Identify, with Reason, If the Following is a Pythagorean Triplet. - Geometry Mathematics 2

Advertisements
Advertisements
Sum

Identify, with reason, if the following is a Pythagorean triplet.
(10, 24, 27)

Advertisements

Solution

In the triplet (10, 24, 27),
102 = 100, 242 = 576, 272 = 729 and 100 + 576 = 676 ≠ 729
The square of the largest number is not equal to the sum of the squares of the other two numbers.
∴ (10, 24, 27) is not a pythagorean triplet.

  Is there an error in this question or solution?
Chapter 2: Pythagoras Theorem - Practice Set 2.1 [Page 38]

APPEARS IN

Balbharati Mathematics 2 Geometry 10th Standard SSC Maharashtra State Board
Chapter 2 Pythagoras Theorem
Practice Set 2.1 | Q 1.5 | Page 38

RELATED QUESTIONS

If the sides of a triangle are 6 cm, 8 cm and 10 cm, respectively, then determine whether the triangle is a right angle triangle or not.


In triangle ABC, ∠C=90°. Let BC= a, CA= b, AB= c and let 'p' be the length of the perpendicular from 'C' on AB, prove that:

1. cp = ab

2. `1/p^2=1/a^2+1/b^2`


Side of a triangle is given, determine it is a right triangle.

`(2a – 1) cm, 2\sqrt { 2a } cm, and (2a + 1) cm`


In figure, ∠B of ∆ABC is an acute angle and AD ⊥ BC, prove that AC2 = AB2 + BC2 – 2BC × BD


ABCD is a rhombus. Prove that AB2 + BC2 + CD2 + DA2= AC2 + BD2


Sides of triangle are given below. Determine it is a right triangle or not? In case of a right triangle, write the length of its hypotenuse. 7 cm, 24 cm, 25 cm

 


Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals


In the given figure, ABC is a triangle in which ∠ABC> 90° and AD ⊥ CB produced. Prove that AC2 = AB2 + BC2 + 2BC.BD.


Prove that the sum of the squares of the diagonals of parallelogram is equal to the sum of the squares of its sides.


PQR is a triangle right angled at P. If PQ = 10 cm and PR = 24 cm, find QR.


ABC is a triangle right angled at C. If AB = 25 cm and AC = 7 cm, find BC.


A tree is broken at a height of 5 m from the ground and its top touches the ground at a distance of 12 m from the base of the tree. Find the original height of the tree.


The diagonals of a rhombus measure 16 cm and 30 cm. Find its perimeter.


Identify, with reason, if the following is a Pythagorean triplet.
(4, 9, 12)


Identify, with reason, if the following is a Pythagorean triplet.
(5, 12, 13)


Identify, with reason, if the following is a Pythagorean triplet.
(24, 70, 74)


Identify, with reason, if the following is a Pythagorean triplet.
(11, 60, 61)


For finding AB and BC with the help of information given in the figure, complete following activity.

AB = BC ..........

\[\therefore \angle BAC = \]

\[ \therefore AB = BC =\] \[\times AC\]

\[ =\] \[\times \sqrt{8}\]

\[ =\] \[\times 2\sqrt{2}\]

 =


Find the length diagonal of a rectangle whose length is 35 cm and breadth is 12 cm.


In the given figure, M is the midpoint of QR. ∠PRQ = 90°. Prove that, PQ= 4PM– 3PR2.


In ∆ABC, ∠BAC = 90°, seg BL and seg CM are medians of ∆ABC. Then prove that:
4(BL+ CM2) = 5 BC2


In an isosceles triangle, length of the congruent sides is 13 cm and its base is 10 cm. Find the distance between the vertex opposite the base and the centroid.


Digonals of parallelogram WXYZ intersect at point O. If OY =5, find WY.


In ΔMNP, ∠MNP = 90˚, seg NQ ⊥ seg MP, MQ = 9, QP = 4, find NQ.


In right angle ΔABC, if ∠B = 90°, AB = 6, BC = 8, then find AC.


A ladder 13 m long rests against a vertical wall. If the foot of the ladder is 5 m from the foot of the wall, find the distance of the other end of the ladder from the ground.


A man goes 40 m due north and then 50 m due west. Find his distance from the starting point.


In the given figure, ∠B = 90°, XY || BC, AB = 12 cm, AY = 8cm and AX : XB = 1 : 2 = AY : YC.

Find the lengths of AC and BC.


In the given figure, AB//CD, AB = 7 cm, BD = 25 cm and CD = 17 cm;
find the length of side BC.


Two poles of heights 6 m and 11 m stand vertically on a plane ground. If the distance between their feet is 12 m;
find the distance between their tips.


If the sides of the triangle are in the ratio 1: `sqrt2`: 1, show that is a right-angled triangle.


In the following figure, AD is perpendicular to BC and D divides BC in the ratio 1: 3.

Prove that : 2AC2 = 2AB2 + BC2


In triangle ABC, AB = AC and BD is perpendicular to AC.
Prove that: BD2 - CD2 = 2CD × AD.


In the figure, given below, AD ⊥ BC.
Prove that: c2 = a2 + b2 - 2ax.


O is any point inside a rectangle ABCD.
Prove that: OB2 + OD2 = OC2 + OA2.


If the angles of a triangle are 30°, 60°, and 90°, then shown that the side opposite to 30° is half of the hypotenuse, and the side opposite to 60° is `sqrt(3)/2` times of the hypotenuse.


Choose the correct alternative: 

In right-angled triangle PQR, if hypotenuse PR = 12 and PQ = 6, then what is the measure of ∠P? 


In Fig. 3, ∠ACB = 90° and CD ⊥ AB, prove that CD2 = BD x AD.


Prove that (1 + cot A - cosec A ) (1 + tan A + sec A) = 2


Triangle ABC is right-angled at vertex A. Calculate the length of BC, if AB = 18 cm and AC = 24 cm.


Triangle PQR is right-angled at vertex R. Calculate the length of PR, if: PQ = 34 cm and QR = 33.6 cm.


The sides of a certain triangle is given below. Find, which of them is right-triangle

16 cm, 20 cm, and 12 cm


In the given figure, angle BAC = 90°, AC = 400 m, and AB = 300 m. Find the length of BC.


In the given figure, angle ACP = ∠BDP = 90°, AC = 12 m, BD = 9 m and PA= PB = 15 m. Find:
(i) CP
(ii) PD
(iii) CD


In triangle PQR, angle Q = 90°, find: PQ, if PR = 34 cm and QR = 30 cm


Show that the triangle ABC is a right-angled triangle; if: AB = 9 cm, BC = 40 cm and AC = 41 cm


In the given figure, angle ACB = 90° = angle ACD. If AB = 10 m, BC = 6 cm and AD = 17 cm, find :
(i) AC
(ii) CD


In the given figure, AD = 13 cm, BC = 12 cm, AB = 3 cm and angle ACD = angle ABC = 90°. Find the length of DC.


A ladder, 6.5 m long, rests against a vertical wall. If the foot of the ladder is 2.5 m from the foot of the wall, find up to how much height does the ladder reach?


In the figure below, find the value of 'x'.


Find the Pythagorean triplets from among the following set of numbers.

3, 4, 5


Find the Pythagorean triplet from among the following set of numbers.

4, 5, 6


Find the Pythagorean triplet from among the following set of numbers.

2, 6, 7


Find the Pythagorean triplet from among the following set of numbers.

9, 40, 41


The sides of the triangle are given below. Find out which one is the right-angled triangle?

8, 15, 17


The sides of the triangle are given below. Find out which one is the right-angled triangle?

11, 12, 15


The sides of the triangle are given below. Find out which one is the right-angled triangle?

1.5, 1.6, 1.7


The sides of the triangle are given below. Find out which one is the right-angled triangle?

40, 20, 30


From the given figure, find the length of hypotenuse AC and the perimeter of ∆ABC.


Find the length of the perpendicular of a triangle whose base is 5cm and the hypotenuse is 13cm. Also, find its area.


Find the length of the hypotenuse of a triangle whose other two sides are 24cm and 7cm.


Each side of rhombus is 10cm. If one of its diagonals is 16cm, find the length of the other diagonals.


In an equilateral triangle ABC, the side BC is trisected at D. Prove that 9 AD2 = 7 AB2.


In a triangle ABC, AC > AB, D is the midpoint BC, and AE ⊥ BC. Prove that: AB2 + AC2 = 2AD2 + `(1)/(2)"BC"^2`


In a triangle ABC, AC > AB, D is the midpoint BC, and AE ⊥ BC. Prove that: AB2 + AC2 = 2(AD2 + CD2)


A point OI in the interior of a rectangle ABCD is joined with each of the vertices A, B, C and D. Prove that  OB2 + OD2 = OC2 + OA2


PQR is an isosceles triangle with PQ = PR = 10 cm and QR = 12 cm. Find the length of the perpendicular from P to QR.


In a square PQRS of side 5 cm, A, B, C and D are points on sides PQ, QR, RS and SP respectively such as PA = PD = RB = RC = 2 cm. Prove that ABCD is a rectangle. Also, find the area and perimeter of the rectangle.


∆ABC is right-angled at C. If AC = 5 cm and BC = 12 cm. find the length of AB.


A man goes 18 m due east and then 24 m due north. Find the distance of his current position from the starting point?


There are two paths that one can choose to go from Sarah’s house to James's house. One way is to take C street, and the other way requires to take B street and then A street. How much shorter is the direct path along C street?


To get from point A to point B you must avoid walking through a pond. You must walk 34 m south and 41 m east. To the nearest meter, how many meters would be saved if it were possible to make a way through the pond?


The perpendicular PS on the base QR of a ∆PQR intersects QR at S, such that QS = 3 SR. Prove that 2PQ2 = 2PR2 + QR2 


Two trains leave a railway station at the same time. The first train travels due west and the second train due north. The first train travels at a speed of `(20 "km")/"hr"` and the second train travels at `(30 "km")/"hr"`. After 2 hours, what is the distance between them?


If in a ΔPQR, PR2 = PQ2 + QR2, then the right angle of ∆PQR is at the vertex ________


In a right angled triangle, the hypotenuse is the greatest side


Find the unknown side in the following triangles


Find the unknown side in the following triangles


Find the unknown side in the following triangles


An isosceles triangle has equal sides each 13 cm and a base 24 cm in length. Find its height


Find the distance between the helicopter and the ship


In triangle ABC, line I, is a perpendicular bisector of BC.
If BC = 12 cm, SM = 8 cm, find CS


The hypotenuse of a right angled triangle of sides 12 cm and 16 cm is __________


Rithika buys an LED TV which has a 25 inches screen. If its height is 7 inches, how wide is the screen? Her TV cabinet is 20 inches wide. Will the TV fit into the cabinet? Give reason


In a right angled triangle, if length of hypotenuse is 25 cm and height is 7 cm, then what is the length of its base?


Sides AB and BE of a right triangle, right-angled at B are of lengths 16 cm and 8 cm respectively. The length of the side of largest square FDGB that can be inscribed in the triangle ABE is ______.


In the adjoining figure, a tangent is drawn to a circle of radius 4 cm and centre C, at the point S. Find the length of the tangent ST, if CT = 10 cm.


In an equilateral triangle PQR, prove that PS2 = 3(QS)2.


Two trees 7 m and 4 m high stand upright on a ground. If their bases (roots) are 4 m apart, then the distance between their tops is ______.


If two legs of a right triangle are equal to two legs of another right triangle, then the right triangles are congruent.


Jiya walks 6 km due east and then 8 km due north. How far is she from her starting place?


Jayanti takes shortest route to her home by walking diagonally across a rectangular park. The park measures 60 metres × 80 metres. How much shorter is the route across the park than the route around its edges?


The foot of a ladder is 6 m away from its wall and its top reaches a window 8 m above the ground. If the ladder is shifted in such a way that its foot is 8 m away from the wall, to what height does its top reach?


Share
Notifications



      Forgot password?
Use app×