How that the Points (1, 1, 1) and (-3, 0, 1) Are Equidistant from the Plane r(3i+4j-12k)+13=0 - Mathematics and Statistics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

Show that the points (1, 1, 1) and (-3, 0, 1) are equidistant from the plane `bar r (3bari+4barj-12bark)+13=0`

Advertisement Remove all ads

Solution

Let p1 and p2 be the distances of (1, 1, 1) and (-3, 0, 1) from the plane  `barr`

`(3hati+4hatj-12hatk)+13=0`

cosider `p_1=|((hati+hatj+hatk).(3hati+4hatj-12hatk)+13)/sqrt(3^2+4^2+(-12)^2)|`

`=|(1(3)+1(4)+1(-12)+13)/sqrt(9+16+144)|=|(3+4-12+13)/13=8/13.....(i)`

also `p_2=|((13hati+0hatj+hatk).(3hati+4hatj-12hatk)+13)/sqrt(3^2+4^2+(-12)^2)|`

`=|(-3(3)+0+1(-12)+13)/sqrt(9+16+144)|=|(-9-12+13)/13=8/13 ....(ii)`

From (i) and (ii),

p1 = p2

Concept: Distance of a Point from a Plane
  Is there an error in this question or solution?

APPEARS IN

Share
Notifications

View all notifications


      Forgot password?
View in app×