Advertisement Remove all ads

Hence Proved. - Applied Mathematics 1

Sum

If `tan(x/2)=tanh(u/2),"show that" u = log[(tan(pi/4+x/2))] `

Advertisement Remove all ads

Solution

Given that: `tan(x/2)=tanh(u/2)`

`u/2=tanh^-1[tan(x/2)]`

`therefore u=2tanh^-1[tan(x/2)]`

By using Inverse hyperbolic function,

`=log[(1+tan(x/2))/(1-tan(x/2))]`

But  `(1+tan(x/2))/(1-tan(x/2))=(pi/4+tan(x/2))/(pi/4-tan(x/2))=tan(pi/4+x/2)`

`therefore u=log[(tan(pi/4+x/2))]`

Hence proved.

Concept: Inverse Hyperbolic Functions
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×