#### My Profile

1. Inform you about time table of exam.

2. Inform you about new question papers.

3. New video tutorials information.

#### Question

Solve the following LPP by using graphical method.

Maximize : Z = 6x + 4y

Subject to x ≤ 2, x + y ≤ 3, -2x + y ≤ 1, x ≥ 0, y ≥ 0.

Also find maximum value of Z.

#### Solution

#### Appears in these question papers

#### Similar questions VIEW ALL

A manufacturer produces two products A and B. Both the products are processed on two different machines. The available capacity of first machine is 12 hours and that of second machine is 9 hours per day. Each unit of product A requires 3 hours on both machines and each unit of product B requires 2 hours on first machine and 1 hour on second machine. Each unit of product A is sold at Rs 7 profit and B at a profit of Rs 4. Find the production level per day for maximum profit graphically.

A dealer in rural area wishes to purchase a number of sewing machines. He has only Rs 5,760 to invest and has space for at most 20 items for storage. An electronic sewing machine cost him Rs 360 and a manually operated sewing machine Rs 240. He can sell an electronic sewing machine at a profit of Rs 22 and a manually operated sewing machine at a profit of Rs 18. Assuming that he can sell all the items that he can buy, how should he invest his money in order to maximize his profit? Make it as a LPP and solve it graphically.

Minimum and maximum z = 5x + 2y subject to the following constraints:

x-2y ≤ 2

3x+2y ≤ 12

-3x+2y ≤ 3

x ≥ 0,y ≥ 0

Find graphically, the maximum value of z = 2*x* + 5*y*, subject to constraints given below :

2x + 4y ≤ 83

x + y ≤ 6

x + y ≤ 4

x ≥ 0, y≥ 0

A retired person wants to invest an amount of Rs. 50, 000. His broker recommends investing in two type of bonds ‘A’ and ‘B’ yielding 10% and 9% return respectively on the invested amount. He decides to invest at least Rs. 20,000 in bond ‘A’ and at least Rs. 10,000 in bond ‘B’. He also wants to invest at least as much in bond ‘A’ as in bond ‘B’. Solve this linear programming problem graphically to maximise his returns.