Share

# Write the Maximum Value of F(X) = X + 1 X , X > 0 . - CBSE (Arts) Class 12 - Mathematics

#### Question

Write the maximum value of f(x) = $x + \frac{1}{x}, x > 0 .$

#### Solution

$\text { Given: } \hspace{0.167em} f\left( x \right) = x + \frac{1}{x}$

$\Rightarrow f'\left( x \right) = 1 - \frac{1}{x^2}$

$\text { For a local maxima or a local minima, we must have }$

$f'\left( x \right) = 0$

$\Rightarrow 1 - \frac{1}{x^2} = 0$

$\Rightarrow x^2 = 1$

$\Rightarrow x = 1, - 1$

$\text { But } x < 0$

$\Rightarrow x = - 1$

$\text { Now,}$

$f''\left( x \right) = \frac{1}{x^3}$

$\text { At x } = - 1:$

$f''\left( - 1 \right) = \frac{2}{\left( - 1 \right)^3} = - 2 < 0$

$\text { So, x = - 1 is a point of local maximum }.$

$\text { Thus, the local maximum value is given by }$

$f\left( - 1 \right) = - 1 + \frac{1}{- 1} = - 1 - 1 = - 2$

Is there an error in this question or solution?

#### Video TutorialsVIEW ALL [1]

Solution Write the Maximum Value of F(X) = X + 1 X , X > 0 . Concept: Graph of Maxima and Minima.
S