CBSE (Science) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for The Least and Greatest Values of F(X) = X3 − 6x2+9x in [0,6], Are (A) 3,4 (B) 0,6 (C) 0,3 (D) 3,6 - CBSE (Science) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

The least and greatest values of f(x) = x3\[-\] 6x2+9x in [0,6], are

(a) 3,4
(b) 0,6
(c) 0,3
(d) 3,6

Solution

\[\text { Given: } f\left( x \right) = x^3 - 6 x^2 + 9x\]

\[ \Rightarrow f'\left( x \right) = 3 x^2 - 12x + 9\]

\[\text { For a local maxima or a local minima, we must have }\]

\[f'\left( x \right) = 0\]

\[ \Rightarrow 3 x^2 - 12x + 9 = 0\]

\[ \Rightarrow x^2 - 4x + 3 = 0\]

\[ \Rightarrow \left( x - 1 \right)\left( x - 3 \right) = 0\]

\[ \Rightarrow x = 1, 3\]

\[\text { Now,} \]

\[f\left( 0 \right) = 0^3 - 6 \left( 0 \right)^2 + 9\left( 0 \right) = 0\]

\[f\left( 1 \right) = 1^3 - 6 \left( 1 \right)^2 + 9\left( 1 \right) = 1 - 6 + 9 = 4\]

\[f\left( 3 \right) = 3^3 - 6 \left( 3 \right)^2 + 9\left( 3 \right) = 27 - 54 + 27 = 0\]

\[f\left( 6 \right) = 6^3 - 6 \left( 6 \right)^2 + 9\left( 6 \right) = 216 - 216 + 54 = 54\]

The least and greatest values of f(x) = x3- 6x2+9x in [0, 6] are 0 and 54, respectively.
Disclaimer: The question in the book has some error. So, none of the options are matching with the solution. The solution here is according to the question given in the book.

  Is there an error in this question or solution?

APPEARS IN

Video TutorialsVIEW ALL [1]

Solution for question: The Least and Greatest Values of F(X) = X3 − 6x2+9x in [0,6], Are (A) 3,4 (B) 0,6 (C) 0,3 (D) 3,6 concept: Graph of Maxima and Minima. For the courses CBSE (Science), CBSE (Commerce), PUC Karnataka Science, CBSE (Arts)
S
View in app×