CBSE (Commerce) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for Show that the Height of the Cylinder of Maximum Volume that Can Be Inscribed a Sphere of Radius R is 2 R √ 3 . - CBSE (Commerce) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

Show that the height of the cylinder of maximum volume that can be inscribed a sphere of radius R is \[\frac{2R}{\sqrt{3}} .\]

Solution

\[\text{ Let the height and radius of the base of the cylinder be h and r, respectively . Then }, \]

\[\frac{h^2}{4} + r^2 = R^2 \]

\[ \Rightarrow h = 2\sqrt{R^2 - r^2} . . . \left( 1 \right)\]

\[\text { Volume of cylinder }, V = \pi r^2 h\]

\[\text { Squaring both sides, we get }\]

\[ \Rightarrow V^2 = \pi^2 r^4 h^2 \]

\[ \Rightarrow V^2 = 4 \pi^2 r^4 \left( R^2 - r^2 \right) \left[ \text { From eq }. \left( 1 \right) \right]\]

\[\text { Now,} \]

\[Z = 4 \pi^2 \left( r^4 R^2 - r^6 \right)\]

\[ \Rightarrow \frac{dZ}{dr} = 4 \pi^2 \left( 4 r^3 R^2 - 6 r^5 \right)\]

\[\text { For maximum or minimum values of Z, we must have} \]

\[\frac{dZ}{dr} = 0\]

\[ \Rightarrow 4 \pi^2 \left( 4 r^3 R^2 - 6 r^5 \right) = 0\]

\[ \Rightarrow 4 r^3 R^2 = 6 r^5 \]

\[ \Rightarrow 6 r^2 = 4 R^2 \]

\[ \Rightarrow r^2 = \frac{4 R^2}{6}\]

\[ \Rightarrow r = \frac{2R}{\sqrt{6}}\]

\[\text { Substituting the value ofrineq } . \left( 1 \right), \text { we get }\]

\[ \Rightarrow h = 2\sqrt{R^2 - \left( \frac{2R}{\sqrt{6}} \right)^2}\]

\[ \Rightarrow h = 2\sqrt{\frac{6 R^2 - 4 R^2}{6}}\]

\[ \Rightarrow h = 2\sqrt{\frac{R^2}{3}}\]

\[ \Rightarrow h = \frac{2R}{\sqrt{3}}\]

\[\text { Now,} \]

\[ \frac{d^2 Z}{d r^2} = 4 \pi^2 \left( 12 r^2 R^2 - 30 r^4 \right)\]

\[ \Rightarrow \frac{d^2 Z}{d r^2} = 4 \pi^2 \left( 12 \left( \frac{2R}{\sqrt{6}} \right)^2 R^2 - 30 \left( \frac{2R}{\sqrt{6}} \right)^4 \right)\]

\[ \Rightarrow \frac{d^2 Z}{d r^2} = 4 \pi^2 \left( 8 R^4 - \frac{80 R^4}{6} \right)\]

\[ \Rightarrow \frac{d^2 Z}{d r^2} = 4 \pi^2 \left( \frac{48 R^4 - 80 R^4}{6} \right)\]

\[ \Rightarrow \frac{d^2 Z}{d r^2} = 4 \pi^2 \left( - \frac{16 R^4}{3} \right) < 0\]

\[\text { So, volume of the cylinder is maximum when } h = \frac{2R}{\sqrt{3}} . \]

\[\text { Hence proved }.\]

  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

Solution Show that the Height of the Cylinder of Maximum Volume that Can Be Inscribed a Sphere of Radius R is 2 R √ 3 . Concept: Graph of Maxima and Minima.
S
View in app×