CBSE (Science) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Find the Point on the Curve X2=8y Which is Nearest to the Point (2,4) ? - CBSE (Science) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

Find the point on the curve x2 = 8y which is nearest to the point (2, 4) ?

Solution

\[\text { Let }\left( x, y \right) \text {be nearest to the point } \left( 2, 4 \right) . \text { Then }, \]

\[ x^2 = 8y\]

\[ \Rightarrow y = \frac{x^2}{8} ............\left( 1 \right)\]

\[ d^2 = \left( x - 2 \right)^2 + \left( y - 4 \right)^2 ................\left[ \text {Using distance formula} \right]\]

\[\text { Now,} \]

\[Z = d^2 = \left( x - 2 \right)^2 + \left( y - 4 \right)^2 \]

\[ \Rightarrow Z = \left( x - 2 \right)^2 + \left( \frac{x^2}{8} - 4 \right)^2 .............\left[\text {From eq. } \left( 1 \right) \right]\]

\[ \Rightarrow Z = x^2 + 4 - 4x + \frac{x^4}{64} + 16 - x^2 \]

\[ \Rightarrow \frac{dZ}{dy} = - 4 + \frac{4 x^3}{64}\]

\[\text {For maximum or minimum values of Z, we must have }\]

\[\frac{dZ}{dy} = 0\]

\[ \Rightarrow - 4 + \frac{4 x^3}{64} = 0\]

\[ \Rightarrow \frac{x^3}{16} = 4\]

\[ \Rightarrow x^3 = 64\]

\[ \Rightarrow x = 4\]

\[\text { Substituting the value of x in eq. } \left( 1 \right), \text { we get }\]

\[y = 2\]

\[\text { Now,} \]

\[\frac{d^2 Z}{d y^2} = \frac{12 x^2}{64}\]

\[ \Rightarrow \frac{d^2 Z}{d y^2} = 3 > 0\]

\[\text { So, the nearest point is } \left( 4, 2 \right) .\]

  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

Solution Find the Point on the Curve X2=8y Which is Nearest to the Point (2,4) ? Concept: Graph of Maxima and Minima.
S
View in app×