CBSE (Arts) Class 12CBSE
Share
Notifications

View all notifications

Find the Absolute Maximum and Minimum Values of a Function F Given by F ( X ) = 12 X 4 / 3 − 6 X 1 / 3 , X ∈ [ − 1 , 1 ] . - CBSE (Arts) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

Find the absolute maximum and minimum values of a function f given by `f(x) = 12 x^(4/3) - 6 x^(1/3) , x in [ - 1, 1]` .

 

Solution

\[\text { Given}: f\left( x \right) = 12 x^\frac{4}{3} - 6 x^\frac{1}{3} \]

\[ \Rightarrow f'\left( x \right) = 16 x^\frac{1}{3} - 2 x^\frac{- 2}{3} = \frac{2\left( 8x - 1 \right)}{x^\frac{2}{3}}\]

\[\text { For a local maximum or a local minimum, we must have }\]

\[f'\left( x \right) = 0\]

\[ \Rightarrow \frac{2\left( 8x - 1 \right)}{x^\frac{2}{3}} = 0\]

\[ \Rightarrow 8x - 1 = 0\]

\[ \Rightarrow x = \frac{1}{8}\]

\[\text { Thus, the critical points of f are } - 1, \frac{1}{8} \text { and  }1 . \]

\[\text { Now }, \]

\[f\left( - 1 \right) = 12 \left( - 1 \right)^\frac{4}{3} - 6 \left( - 1 \right)^\frac{1}{3} = 18\]

\[f\left( \frac{1}{8} \right) = 12 \left( \frac{1}{8} \right)^\frac{4}{3} - 6 \left( \frac{1}{8} \right)^\frac{1}{3} = \frac{- 9}{4}\]

\[f\left( 1 \right) = 12 \left( 1 \right)^\frac{4}{3} - 6 \left( 1 \right)^\frac{1}{3} = 6\]

\[\text { Hence, the absolute maximum value when  x = - 1 is 18 and the absolute minimum value when } x = \frac{1}{8}\text{ is }\frac{- 9}{4} . \]

  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

Solution Find the Absolute Maximum and Minimum Values of a Function F Given by F ( X ) = 12 X 4 / 3 − 6 X 1 / 3 , X ∈ [ − 1 , 1 ] . Concept: Graph of Maxima and Minima.
S
View in app×