Share

Books Shortlist
Your shortlist is empty

# Solution for F(X) = X3 (2x − 1)3. - CBSE (Science) Class 12 - Mathematics

#### Question

f(x) = x3 (2x $-$ 1)3.

#### Solution

$\text { Given:} f\left( x \right) = x^3 \left( 2x - 1 \right)^3$

$\Rightarrow f'\left( x \right) = 3 x^2 \left( 2x - 1 \right)^3 + 6 x^3 \left( 2x - 1 \right)^2$

$\text { For the local maxima or minima, we must have }$

$f'\left( x \right) = 0$

$\Rightarrow 3 x^2 \left( 2x - 1 \right)^3 + 6 x^3 \left( 2x - 1 \right)^2 = 0$

$\Rightarrow 3 x^2 \left( 2x - 1 \right)^2 \left( 2x - 1 + 2x \right) = 0$

$\Rightarrow x^2 \left( 2x - 1 \right)^2 \left( 4x - 1 \right) = 0$

$\Rightarrow x = 0, \frac{1}{2} \text { and } \frac{1}{4}$

Sincef '(x) changes from negative to positive when x increases through $\frac{1}{4}$ x = $\frac{1}{4}$ is a point of local minima.
The local minimum value of  f (x)  at x = $\frac{1}{4}$ is given by

$\left( \frac{1}{4} \right)^3 \left( \frac{1}{2} - 1 \right)^3 = \frac{- 1}{512}$
Is there an error in this question or solution?

#### Video TutorialsVIEW ALL [1]

Solution F(X) = X3 (2x − 1)3. Concept: Graph of Maxima and Minima.
S