CBSE (Science) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for F(X) = X √ 32 − X 2 , − 5 < X < 5 . - CBSE (Science) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

f(x) = \[x\sqrt{32 - x^2}, - 5\frac{<}{}x\frac{<}{}5\] .

Solution

\[\text { Given }: f\left( x \right) = x\sqrt{32 - x^2}\]

\[ \Rightarrow f'\left( x \right) = \sqrt{32 - x^2} - \frac{x^2}{\sqrt{32 - x^2}}\]

\[\text {For the local maxima or minima, we must have }\]

\[ f'\left( x \right) = 0\]

\[ \Rightarrow \sqrt{32 - x^2} - \frac{x^2}{\sqrt{32 - x^2}} = 0\]

\[ \Rightarrow \sqrt{32 - x^2} = \frac{x}{\sqrt{32 - x^2}}\]

\[ \Rightarrow 32 - x^2 = x^2 \]

\[ \Rightarrow x^2 = 16\]

\[ \Rightarrow x = \pm 4 \]

\[\text { Thus, x = 4 and x = - 4 are the possible points of local maxima or local minima  }. \]

\[\text { Now,} \]

\[f''\left( x \right) = \frac{- x}{\sqrt{32 - x^2}} - \left( \frac{2x\sqrt{32 - x^2} + \frac{x^3}{\sqrt{32 - x^2}}}{32 - x^2} \right) = \frac{- x}{\sqrt{32 - x^2}} - \left( \frac{2x\left( 32 - x^2 \right) + x^3}{\left( 32 - x^2 \right)\sqrt{32 - x^2}} \right)\]

\[\text { At }x = 4: \]

\[ f''\left( 4 \right) = \frac{- 4}{\sqrt{32 - 4^2}} - \left[ \frac{8\left( 32 - 4^2 \right) + 4^3}{\left( 32 - 4^2 \right)\sqrt{32 - 4^2}} \right] = - 1 - \frac{192}{64} = - 3 < 0\]

\[\text { So, x = 4 is the point of local maximum } . \]

\[\text { The local maximum value is given by} \]

\[f\left( 4 \right) = 4\sqrt{32 - 4^2} = 16\]

\[\text { At } x = - 4: \]

\[ f''\left( - 4 \right) = \frac{4}{\sqrt{32 - 4^2}} + \left[ \frac{8\left( 32 - 4^2 \right) - 4^3}{\left( 32 - 4^2 \right)\sqrt{32 - 4^2}} \right] = 1 + 2 = 3 > 0\]

\[\text { So, x = - 4 is the point of local minimum } . \]

\[\text { The local minimum value is given by } \]

\[f\left( - 4 \right) = - 4\sqrt{32 - 4^2} = - 16\]

  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

Solution for question: F(X) = X √ 32 − X 2 , − 5 < X < 5 . concept: Graph of Maxima and Minima. For the courses CBSE (Science), CBSE (Commerce), CBSE (Arts), PUC Karnataka Science
S
View in app×