PUC Karnataka Science Class 12Department of Pre-University Education, Karnataka
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for F(X) = (X − 1) (X+2)2. - PUC Karnataka Science Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

f(x) =  (x \[-\] 1) (x+2)2

Solution

\[\text { Given }: f\left( x \right) = \left( x - 1 \right) \left( x + 2 \right)^2 \]

\[ \Rightarrow f'\left( x \right) = \left( x + 2 \right)^2 + 2\left( x + 2 \right)\left( x - 1 \right)\]

\[\text{ For a local maximum or a local minimum, we must have }\]

\[f'\left( x \right) = 0\]

\[ \Rightarrow \left( x + 2 \right)^2 + 2\left( x + 2 \right)\left( x - 1 \right) = 0\]

\[ \Rightarrow \left( x + 2 \right)\left( x + 2 + 2x - 2 \right) = 0\]

\[ \Rightarrow \left( x + 2 \right)\left( 3x \right) = 0\]

\[ \Rightarrow x = 0, - 2\]

Since  f '(x) changes from negative to positive when x increases through 0, x = 0 is the point of local minima.
The local minimum value of  f (x) at x = 0 is given by

\[\left( 0 - 1 \right) \left( 0 + 2 \right)^2 = - 4\] 

Since  f '(x) changes sign from positive to negative when x increases through \[- 2\] ,x = \[- 2\]

is the point of local maxima.
The local maximum value of  f (x)  at x = \[- 2\] is given by

\[\left( - 2 - 1 \right) \left( - 2 + 2 \right)^2 = 0\]
  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

Solution F(X) = (X − 1) (X+2)2. Concept: Graph of Maxima and Minima.
S
View in app×