CBSE (Arts) Class 12CBSE
Share
Notifications

View all notifications

F(X) = Sin + √ 3 Cos X is Maximum When X = (A) π 3 (B) π 4 (C) π 6 (D) 0 - CBSE (Arts) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

f(x) = \[\sin + \sqrt{3} \cos x\] is maximum when x = ___________ .

  • \[\frac{\pi}{3}\]

  • \[\frac{\pi}{4}\]

  • \[\frac{\pi}{6}\]

  • 0

Solution

\[\frac{\pi}{6}\]

 

\[\text { Given }: f\left( x \right) = \sin x + \sqrt{3} \cos x\]

\[ \Rightarrow f'\left( x \right) = \cos x - \sqrt{3} \sin x\]

\[\text { For a local maxima or a local minima, we must have } \]

\[f'\left( x \right) = 0\]

\[ \Rightarrow \cos x - \sqrt{3} \sin x = 0\]

\[ \Rightarrow \cos x = \sqrt{3} \sin x\]

\[ \Rightarrow \tan x = \frac{1}{\sqrt{3}}\]

\[ \Rightarrow x = \frac{\pi}{6}\]

\[\text { Now,} \]

\[f''\left( x \right) = - \sin x - \sqrt{3} \cos x\]

\[ \Rightarrow \Rightarrow f''\left( \frac{\pi}{2} \right) = - \sin\frac{\pi}{2} - \sqrt{3} \cos\frac{\pi}{2}\frac{- 1}{2} - \frac{3}{2} = - 2 < 0\]

\[\text { So,} x = \frac{\pi}{2}\text {  is a local maxima }. \]

  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

Solution F(X) = Sin + √ 3 Cos X is Maximum When X = (A) π 3 (B) π 4 (C) π 6 (D) 0 Concept: Graph of Maxima and Minima.
S
View in app×