#### Question

Determine two positive numbers whose sum is 15 and the sum of whose squares is maximum.

#### Solution

\[\text { Let the two positive numbers be x and y}. Then,\]

\[x + y = 15 . . . \left( 1 \right)\]

\[\text{Now}, \]

\[z = x^2 + y^2 \]

\[ \Rightarrow z = x^2 + \left( 15 - x \right)^2 \left[ \text { From eq } . \left( 1 \right) \right]\]

\[ \Rightarrow z = x^2 + x^2 + 225 - 30x\]

\[ \Rightarrow z = 2 x^2 + 225 - 30x\]

\[ \Rightarrow \frac{dz}{dx} = 4x - 30\]

\[\text { For maximum or minimum values of z, we must have }\]

\[\frac{dz}{dx} = 0\]

\[ \Rightarrow 4x - 30 = 0\]

\[ \Rightarrow x = \frac{15}{2}\]

\[\frac{d^2 z}{d x^2} = 4 > 0\]

\[\text { Substituting x } = \frac{15}{2} in \left( 1 \right), \text { we get } \]

\[y = \frac{15}{2}\]

\[\text { Thus, z is minimum when x = y } = \frac{15}{2} .\]