Share

Books Shortlist

# An Isosceles Triangle of Vertical Angle 2 θ is Inscribed in a Circle of Radius A. Show that the Area of the Triangle is Maximum When θ = π 6 . - CBSE (Science) Class 12 - Mathematics

#### Question

An isosceles triangle of vertical angle 2 $\theta$ is inscribed in a circle of radius a. Show that the area of the triangle is maximum when $\theta$ = $\frac{\pi}{6}$ .

#### Solution

Let ABC be an isosceles triangle inscribed in the circle with radius a such that AB = AC.

$AD = AO + OD = a + a\cos2\theta = a\left( 1 + \cos2\theta \right)and$

$BC = 2BD = 2a\sin2\theta$

$\text { As, area of the triangle } AC, A = \frac{1}{2}BC \times AD$

$\Rightarrow A\left( \theta \right) = \frac{1}{2} \times 2a\sin2\theta \times a\left( 1 + \cos2\theta \right)$

$= a^2 \sin2\theta\left( 1 + \cos2\theta \right)$

$= a^2 \sin2\theta + a^2 \sin2\theta\cos2\theta$

$\Rightarrow A\left( \theta \right) = a^2 \sin2\theta + \frac{a^2 \sin4\theta}{2}$

$\Rightarrow A'\left( \theta \right) = 2 a^2 \cos2\theta + \frac{4 a^2 \cos4\theta}{2}$

$\Rightarrow A'\left( \theta \right) = 2 a^2 \cos2\theta + 2 a^2 \cos4\theta$

$\Rightarrow A'\left( \theta \right) = 2 a^2 \left( \cos2\theta + \cos4\theta \right)$

$\text { For maxima or minima }, A'\left( \theta \right) = 0$

$\Rightarrow 2 a^2 \left( \cos2\theta + \cos4\theta \right) = 0$

$\Rightarrow \cos2\theta + \cos4\theta = 0$

$\Rightarrow \cos2\theta = - \cos4\theta$

$\Rightarrow \cos2\theta = \cos\left( \pi - 4\theta \right)$

$\Rightarrow 2\theta = \pi - 4\theta$

$\Rightarrow 6\theta = \pi$

$\Rightarrow \theta = \frac{\pi}{6}$

$\text { Also,} A''\left( \theta \right) = 2 a^2 \left( - \sin2\theta - \sin4\theta \right) = - 2 a^2 \left( \sin2\theta + \sin4\theta \right) < 0 \text { at }\theta = \frac{\pi}{6} .$

$\text { So, the area of the triangle is maximum at } \theta = \frac{\pi}{6} .$

Is there an error in this question or solution?

#### Video TutorialsVIEW ALL [1]

Solution An Isosceles Triangle of Vertical Angle 2 θ is Inscribed in a Circle of Radius A. Show that the Area of the Triangle is Maximum When θ = π 6 . Concept: Graph of Maxima and Minima.
S