CBSE (Science) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

A Wire of Length 20 M is to Be Cut into Two Pieces. One of the Pieces Will Be Bent into Shape of a Square and the Other into Shape of an Equilateral Triangle. Where the We Should Be Cut So that the - CBSE (Science) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the we should be cut so that the sum of the areas of the square and triangle is minimum?

Solution

\[\text {Suppose the wire, which is to be made into a square and a triangle, is cut into two pieces of length x and y, respectively . Then}, \]

\[x + y = 20 .......... \left( 1 \right)\]

\[\text { Perimeter of square }, 4\left( Side \right) = x\]

\[ \Rightarrow \text { Side } = \frac{x}{4}\]

\[\text { Area of square = }\left( \frac{x}{4} \right)^2 = \frac{x^2}{16}\]

\[\text { Perimeter of triangle }, 3\left( \text { Side } \right) = y\]

\[ \Rightarrow \text { Side } = \frac{y}{3}\]

\[\text { Area of triangle } = \frac{\sqrt{3}}{4} \times \left( \text { Side } \right)^2 = \frac{\sqrt{3}}{4} \times \left( \frac{y}{3} \right)^2 = \frac{\sqrt{3} y^2}{36}\]

\[\text { Now,} \]

\[z =\text {  Area of square + Area of triangle }\]

\[ \Rightarrow z = \frac{x^2}{16} + \frac{\sqrt{3} y^2}{36}\]

\[ \Rightarrow z = \frac{x^2}{16} + \frac{\sqrt{3} \left( 20 - x \right)^2}{36} .................\left[ \text { From eq } . \left( 1 \right) \right]\]

\[ \Rightarrow \frac{dz}{dx} = \frac{2x}{16} - \frac{2\sqrt{3}\left( 20 - x \right)}{36}\]

\[\text { For maximum or minimum values of z, we must have }\]

\[\frac{dz}{dx} = 0\]

\[ \Rightarrow \frac{2x}{16} - \frac{\sqrt{3}\left( 20 - x \right)}{18} = 0\]

\[ \Rightarrow \frac{9x}{4} = \sqrt{3}\left( 20 - x \right)\]

\[ \Rightarrow \frac{9x}{4} + x\sqrt{3} = 20\sqrt{3}\]

\[ \Rightarrow x\left( \frac{9}{4} + \sqrt{3} \right) = 20\sqrt{3}\]

\[ \Rightarrow x = \frac{20\sqrt{3}}{\left( \frac{9}{4} + \sqrt{3} \right)}\]

\[ \Rightarrow x = \frac{80\sqrt{3}}{\left( 9 + 4\sqrt{3} \right)}\]

\[ \Rightarrow y = 20 - \frac{80\sqrt{3}}{9 + 4\sqrt{3}} .............\left[ \text { From eq }. \left( 1 \right) \right]\]

\[ \Rightarrow y = \frac{180}{9 + 4\sqrt{3}}\]

\[ \frac{d^2 z}{d x^2} = \frac{1}{8} + \frac{\sqrt{3}}{18} > 0\]

\[\text { Thus, z is minimum when } x = \frac{80\sqrt{3}}{\left( 9 + 4\sqrt{3} \right)} \text { and }y = \frac{180}{9 + 4\sqrt{3}} . \]

\[\text { Hence, the wire of length 20 cm should be cut into two pieces of lengths }\frac{80\sqrt{3}}{\left( 9 + 4\sqrt{3} \right)} \text { m and } \frac{180}{9 + 4\sqrt{3}} m . \]

Notes

The solution given in the book is incorrrect . The solution here is created according to the question given in the book.

  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

Solution A Wire of Length 20 M is to Be Cut into Two Pieces. One of the Pieces Will Be Bent into Shape of a Square and the Other into Shape of an Equilateral Triangle. Where the We Should Be Cut So that the Concept: Graph of Maxima and Minima.
S
View in app×