CBSE (Science) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

A Beam is Supported at the Two End and is Uniformly Loaded. the Bending Moment M at a Distance X from One End is Given by M = W X 3 X − W 3 X 3 L 2 . Find the Point at Which M is Maximum in Case. - CBSE (Science) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

A beam is supported at the two end and is uniformly loaded. The bending moment M at a distance x from one end is given by \[M = \frac{Wx}{3}x - \frac{W}{3}\frac{x^3}{L^2}\] .

Find the point at which M is maximum in a given case.

Solution

\[\text { Given }: \hspace{0.167em} M = \frac{Wx}{3} - \frac{W x^3}{3 L^2}\]

\[ \Rightarrow \frac{dM}{dx} = \frac{W}{3} - 3 \times \frac{W x^2}{3 L^2}\]

\[ \Rightarrow \frac{dM}{dx} = \frac{W}{3} - \frac{W x^2}{L^2}\]

\[\text { For maximum or minimum values of M, we must have }\]

\[\frac{dM}{dx} = 0\]

\[ \Rightarrow \frac{W}{3} - \frac{W x^2}{L^2} = 0\]

\[ \Rightarrow \frac{W}{3} = \frac{W x^2}{L^2}\]

\[ \Rightarrow x = \frac{L}{\sqrt{3}}\]

\[\text { Now }, \]

\[\frac{d^2 M}{d x^2} = - \frac{2Wx}{L^2} < 0\]

\[\text { So, M is maximum at } x = \frac{L}{\sqrt{3}} .\]

  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

Solution A Beam is Supported at the Two End and is Uniformly Loaded. the Bending Moment M at a Distance X from One End is Given by M = W X 3 X − W 3 X 3 L 2 . Find the Point at Which M is Maximum in Case. Concept: Graph of Maxima and Minima.
S
View in app×