Sum
Given `int_0^x 1/(x^2+a^2) dx=1/atan^(-1)(x/a)`using DUIS find the value of `int_0^x 1/(x^2+a^2) `
Advertisement Remove all ads
Solution
`int_0^x 1/(x^2+a^2) dx=1/atan^(-1)(x/a)`
Differentiate w.r.t a , taking ‘a’ as parameter
`d/(da)int_0^x 1/(x^2+a^2) dx=d/(da)[1/atan^(-1)(x/a)]`
Applying D.U.I.S rule,
D.U.I.S rule says that if function and its partial derivative is continuous then we can apply differential operator in the integral operator by converting it into partial derivative taking one parameter fro function.
`int_0^xdel/(dela) 1/(x^2+a^2) dx=-1/atan^(-1)(x/a)xx1/a+(-x)/(a(x^2+a^2)`
`int_0^x(2a^2)/(x^2+a^2) dx=-1/atan^(-1)(x/a)xx1/a+(-x)/(a(x^2+a^2)`
`int_0^x(dx)/(x^2+a^2)^2 dx=-1/(2a^3)tan^(-1) x/a+x/(2a^2(x^2+a^2)`
Concept: Method of Variation of Parameters
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads