Advertisement Remove all ads

Given ∫ X 0 1 X 2 + a 2 D X = 1 a Tan − 1 ( X a ) Using Duis Find the Value of ∫ X 0 1 X 2 + a 2 - Applied Mathematics 2

Sum

Given `int_0^x 1/(x^2+a^2) dx=1/atan^(-1)(x/a)`using DUIS find the value of `int_0^x 1/(x^2+a^2) `

Advertisement Remove all ads

Solution

`int_0^x 1/(x^2+a^2) dx=1/atan^(-1)(x/a)`

Differentiate w.r.t a , taking ‘a’ as parameter

`d/(da)int_0^x 1/(x^2+a^2) dx=d/(da)[1/atan^(-1)(x/a)]`

Applying D.U.I.S rule,

D.U.I.S rule says that if function and its partial derivative is continuous then we can apply differential operator in the integral operator by converting it into partial derivative taking one parameter fro function.

`int_0^xdel/(dela) 1/(x^2+a^2) dx=-1/atan^(-1)(x/a)xx1/a+(-x)/(a(x^2+a^2)`

`int_0^x(2a^2)/(x^2+a^2) dx=-1/atan^(-1)(x/a)xx1/a+(-x)/(a(x^2+a^2)`

`int_0^x(dx)/(x^2+a^2)^2 dx=-1/(2a^3)tan^(-1)  x/a+x/(2a^2(x^2+a^2)`

Concept: Method of Variation of Parameters
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×