Advertisement Remove all ads

Given the p.d.f. of a continuous r.v. X , f (x) = x23 ,for –1 < x < 2 and = 0 otherwise Determine c.d.f. of X hence find P( x < 1) - Mathematics and Statistics

Advertisement Remove all ads
Advertisement Remove all ads
Sum

Given the p.d.f. of a continuous r.v. X , f (x) = `x^2/3` ,for –1 < x < 2 and = 0 otherwise

Determine c.d.f. of X hence find

P( x < 1) 

Advertisement Remove all ads

Solution

Let F(x) be the c.d.f. of X

Then F(x) = ` int_(-∞)^x f (x) dx`

=` int_(-∞)^-1 f (x) dx + int_(-1)^x f (x) dx`

= 0 + `int_(-1)^x  x^2/3 dx = 1/3int_(-1)^x  x^2 dx`

= `1/3[x^3/3]_-1^x`

= `1/3[x^3/3-(-1/3)]`

∴ f(x) = `(x^3+1)/9`

P( x < 1)  = `F (1) - F (-1) - [(1^3 + 1)/9]- [((-1)^3 + 1)/9]- (2-0)/9-2/9`

Concept: Types of Random Variables
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×